1,017 research outputs found

    Physical properties of solar polar jets: A statistical study with Hinode XRT data

    Full text link
    The target of this work is to investigate the physical nature of polar jets in the solar corona and their possible contribution to coronal heating and solar wind flow based on the analysis of X-ray images acquired by the Hinode XRT telescope. We estimate the different forms of energy associated with many of these small-scale eruptions, in particular the kinetic energy and enthalpy. Two Hinode XRT campaign datasets focusing on the two polar coronal holes were selected to analyze the physical properties of coronal jets; the analyzed data were acquired using a series of three XRT filters. Typical kinematical properties (e.g., length, thickness, lifetime, ejection rate, and velocity) of 18 jets are evaluated from the observed sequences, thus providing information on their possible contribution to the fast solar wind flux escaping from coronal holes. Electron temperatures and densities of polar-jet plasmas are also estimated using ratios of the intensities observed in different filters. We find that the largest amount of energy eventually provided to the corona is thermal. The energy due to waves may also be significant, but its value is comparatively uncertain. The kinetic energy is lower than thermal energy, while other forms of energy are comparatively low. Lesser and fainter events seem to be hotter, thus the total contribution by polar jets to the coronal heating could have been underestimated so far. The kinetic energy flux is usually around three times smaller than the enthalpy counterpart, implying that this energy is converted into plasma heating more than in plasma acceleration. This result suggests that the majority of polar jets are most likely not escaping from the Sun and that only cooler ejections could possibly have enough kinetic energy to contribute to the total solar wind flow.Comment: 21 pages, 10 figures, Submitted and accepted for publishing in Astronomy and Astrophysics journa

    Recent Results of non-accelarator-based neutrino experiments

    Full text link
    Recent results of non-accelerator-based experiments, including those of solar, atmospheric, and reactor neutrinos oscillations, neutrinoless double-beta decays, and neutrino magnetic moments, are reviewed. Future projects and their respective prospects are summarized.Comment: V.2, minor changes with one more reference added. Plenary talk given at the "32nd International Conference on High Energy Physics", Aug. 16-22, 2004, Beijing, P.R. Chin

    Neutrino texture saturating the CP asymmetry

    Get PDF
    We study a neutrino mass texture which can explain the neutrino oscillation data and also saturate the upper bound of the CP asymmetry ϵ1\epsilon_1 in the leptogenesis. We consider the thermal and non-thermal leptogenesis based on the right-handed neutrino decay in this model. A lower bound of the reheating temperature required for the explanation of the baryon number asymmetry is estimated as O(108)O(10^8)GeV for the thermal leptogenesis and O(106)O(10^{6})GeV for the non-thermal one.It can be lower than the upper bound of the reheating temperature imposed by the cosmological gravitino problem. An example of the construction of the discussed texture is also presented.Comment: 23 pages, 6 figure

    S-particles at their naturalness limits

    Full text link
    We draw attention on a particular configuration of supersymmetric particle masses, motivated by naturalness and flavour considerations. All its relevant phenomenological properties for the LHC are described in terms of a few physical parameters, irrespective of the underlying theoretical model. This allows a simple characterization of its main features, useful to define a strategy for its discovery.Comment: 13 pages, 8 figures, added reference

    The role of lateral magnetic reconnection in solar eruptive events

    Get PDF
    Abstract. On 10–11 December 2005 a slow CME occurred in between two coronal streamers in the Western Hemisphere. SOHO/MDI magnetograms show a multipolar magnetic configuration at the photosphere consisting of a complex of active regions located at the CME source and two bipoles at the base of the lateral coronal streamers. White light observations reveal that the expanding CME affects both of the lateral streamers and induces the release of plasma within or close to them. These transient phenomena are possibly due to magnetic reconnections induced by the CME expansion that occurs either inside the streamer current sheet or between the CME flanks and the streamer. Our observations show that CMEs can be associated to not only a single reconnection process at a single location in the corona, but also to many reconnection processes occurring at different times and locations around the flux rope. Numerical simulations are used to demonstrate that the observed lateral reconnections can be reproduced. The observed secondary reconnections associated to CMEs may facilitate the CME release by globally decreasing the magnetic tension of the corona. Future CME models should therefore take into account the lateral reconnection effect

    A Comprehensive Study of the Initiation and Early Evolution of a Coronal Mass Ejection from Ultraviolet and White-Light Data

    Get PDF
    In this work we analyze simultaneous UV and white-light (WL) observations of a slow CME that occurred on 2000 January 31. Unlike most CMEs studied in the UV so far, this event was not associated with a flare or filament eruption. Based on vector magnetograph data and magnetic field models, we find that field disruption in an active region (AR) was driven by flux emergence and shearing motions, leading to the CME and to post-CME arcades seen in the EUV. WL images, acquired by the Mark IV coronagraph at the Mauna Loa Observatory, allowed us to identify the CME front, bubble, and core shortly (about 1 hr) after the CME ejection. From polarized brightness (pB) Mauna Loa data we estimated the mass and electron densities of the CME. The CME mass increases with time, indicating that about 2/3 of the mass originates above 1.6 R☉. Analysis of the UV spectra, acquired by the Solar and Heliospheric Observatory Ultraviolet Coronagraph Spectrometer (SOHO UVCS) at 1.6 and 1.9 R☉, allowed us to derive the electron temperature distribution across the CME. The temperature maximizes at the CME core and increases between 1.6 and 1.9 R☉. This event was unusual, in that the leading edge and the CME core were hotter than the ambient corona. We discuss magnetic heating and adiabatic compression as explanations for the high temperatures in the core and leading edge, respectively

    Modeling UV and X-Ray Emission in a Post-CME Current Sheet

    Full text link
    A post-CME current sheet (CS) is a common feature developed behind an erupting flux rope in CME models. Observationally, white light observations have recorded many occurrences of a thin ray appearing behind a CME eruption that closely resembles a post-CME CS in its spatial correspondence and morphology. UV and X-ray observations further strengthen this interpretation by the observations of high temperature emission at locations consistent with model predictions. The next question then becomes whether the properties inside a post-CME CS predicted by a model agree with observed properties. In this work, we assume that the post-CME CS is a consequence of Petschek-like reconnection and that the observed ray-like structure is bounded by a pair of slow mode shocks developed from the reconnection site. We perform time-dependent ionization calculations and model the UV line emission. We find that such a model is consistent with SOHO/UVCS observations of the post-CME CS. The change of Fe XVIII emission in one event implies an inflow speed of ~10 km/s and a corresponding reconnection rate of M_A ~ 0.01. We calculate the expected X-ray emission for comparison with X-ray observations by Hinode/XRT, as well as the ionic charge states as would be measured in-situ at 1 AU. We find that the predicted count rate for Hinode/XRT agree with what was observed in a post-CME CS on April 9, 2008, and the predicted ionic charge states are consistent with high ionization states commonly measured in the interplanetary CMEs. The model results depend strongly on the physical parameters in the ambient corona, namely the coronal magnetic field, the electron density and temperature during the CME event. It is crucial to obtain these ambient coronal parameters and as many facets of the CS properties as possible by observational means so that the post-CME current sheet models can be scrutinized more effectively

    A New Variety of Coronal Mass Ejection: Streamer Puffs from Compact Ejective Flares

    Get PDF
    We report on SOHO UVCS, LASCO, EIT, and MDI observations of a series of narrow ejections that occurred at the solar limb. These ejections originated from homologous compact flares whose source was an island of included polarity located just inside the base of a coronal streamer. Some of these ejections result in narrow CMEs ("streamer puffs") that move out along the streamer. These streamer puffs differ from "streamer blowout" CMEs in that (1) while the streamer is transiently inflated by the puff, it is not disrupted, and (2) each puff comes from a compact explosion in the outskirts of the streamer arcade, not from an extensive eruption along the main neutral line of the streamer arcade. From the observations, we infer that each streamer puff is produced by means of the inflation or blowing open of an outer loop of the arcade by ejecta from the compact-flare explosion in the foot of the loop. So, in terms of their production, our streamer puffs are a new variety of CME
    corecore